Segregation of complex acoustic scenes based on temporal coherence
نویسندگان
چکیده
In contrast to the complex acoustic environments we encounter everyday, most studies of auditory segregation have used relatively simple signals. Here, we synthesized a new stimulus to examine the detection of coherent patterns ('figures') from overlapping 'background' signals. In a series of experiments, we demonstrate that human listeners are remarkably sensitive to the emergence of such figures and can tolerate a variety of spectral and temporal perturbations. This robust behavior is consistent with the existence of automatic auditory segregation mechanisms that are highly sensitive to correlations across frequency and time. The observed behavior cannot be explained purely on the basis of adaptation-based models used to explain the segregation of deterministic narrowband signals. We show that the present results are consistent with the predictions of a model of auditory perceptual organization based on temporal coherence. Our data thus support a role for temporal coherence as an organizational principle underlying auditory segregation. DOI:http://dx.doi.org/10.7554/eLife.00699.001.
منابع مشابه
Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we exa...
متن کاملEvidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.
The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This...
متن کاملTemporal Coherence in the Perceptual Organization and Cortical Representation of Auditory Scenes
Just as the visual system parses complex scenes into identifiable objects, the auditory system must organize sound elements scattered in frequency and time into coherent "streams." Current neurocomputational theories of auditory streaming rely on tonotopic organization of the auditory system to explain the observation that sequential spectrally distant sound elements tend to form separate perce...
متن کاملReverberation impairs brainstem temporal representations of voiced vowel sounds: challenging “periodicity-tagged” segregation of competing speech in rooms
The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into "auditory objects." Psychophysical studies demonstrate a strong interaction between reverberatio...
متن کاملEEG signatures accompanying auditory figure-ground segregation
In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly chan...
متن کامل